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J. Phys.: Condens. Matter 2 (1990) 10131-10145. Printed in the UK 

The dipolar fluctuation spectrum and the shape of the 
wings of nuclear magnetic resonance absorption spectra 
in solids 

A A Lundin, A V Makarenko and V E Zobovt 
N N Semenov Institute of Chemical Physics, Academy of Sciences of the USSR, Kosygina 
4, MOSCOW, 117977 GSP-1, USSR 

Received 28 February 1990, in final form 23 August 1990 

Abstract. A theoretical approach providing the shape of the spectrum of dipolar fluctuations 
(Fourier transform of the longitudinal component of magnetization) and shape of the wings 
of NMR absorption in condensed matter has been elaborated. It is shown that the spectral 
contours are exponentials with the same decay constant. The results obtained explain for 
the first time the known experimental data and establish a connection between two groups 
of different experiments. The theoretical prediction is in good agreement with experimental 
results. 

1. Introduction 

In 1969, McArthur et a1 [ 11 experimentally observed for the first time the exponential 
dependence of the rate of cross relaxation accompanying double resonance as a function 
of detuning. 

Thus, it was found that Fourier transform of the time correlation function (TCF) of 
the longitudinal (with respect to an external magnetic field) component of magnetization 
considered for not too long times was an exponential function of frequency. The detected 
spectrum was called a spectrum of dipolar fluctuations (SDF). This result was quite 
unexpected when considered against the background of the widely accepted concept 
that the absolute majority of TCFS derived by magnetic resonance techniques were of 
Gaussian or Lorentzian type. Subsequently, the results of [ 11 have often been confirmed 
experimentally at various objects (see, e.g., [2]) and by different techniques [3,4]. 

Up to now the above results have not been explained and, as was pointed out in [5], 
the sense of phenomenological approximations for memory functions [6] given in [7] to 
describe the results of [ l ]  is vague. This fact was also noted in [7]. For application to the 
problem of the shape of the wings of NMR absorption the analogous procedure results in 
a Gaussian shape [8]. As will be shown below this is not the case (see also [9]). Thus, 
exponential frequency asymptotics of TCF spectra observed in NMR have neither a 
qualitative nor a quantitative description. 

t Permanent address: L V Kirensky Institute of Physics, Siberian Branch of the Academy of Sciences of the 
USSR, Academgorodok, Krasnoyarsk, 660036, USSR. 
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In the present communication a description of the SDF and the shape of the wings of 
the NMR line is given in terms of the theory developed. It is shown that they are 
exponential functions having the same decrement constants. The results of calculations 
are in qualitative and quantitative agreement with experimental results [l, lo]. 

2. Basic equations 

It is known [ l l ]  that in non-metallic diamagnetic solids the broadening of spectra stems 
from a secular part of the dipole-dipole interaction between nuclear spins: 

H = 2 6,S,,S,, + a,(S: S; + S; S:)  = H,, + Hff (1) 
J ’ I  1’1 

a ,  = -+61, (here we use the same notation as in [ l l ] ) .  

the following integral-differential equation: 
As known (see, e.g., [12,13] the TCF under the most general assumptions satisfies 

d F  
- = -lo‘ M ( t  - t ’ )F( t ’ )  dt. 
d t  

Thus, the equations for application to high-temperature spin systems were obtained in 
[13-151 and a constructive procedure was proposed in [14] to determine the memory 
function M ( t )  for the system having a large number of near neighbours. This idea was 
realized in [ 151 during the calculation of several correlation functions in spin systems 
described by the above Hamiltonian (1). Consequently, for the autocorrelation functions 
of longitudinal r;(t) and lateral r,(t) (with respect to an outer magnetic field) com- 
ponents of a separate spin the equations strictly analogous to equation (2) are valid [13- 
151. Equation (2) also holds for a correlation function of a transverse component of 
entire spin r(t) including cross TCF terms between all different spins. R$)( t ) ,  RA(t )  and 
R(t)  are kernels (memory functions) of the appropriate equations. Our TCFS have an 
ordinary form [ l l ,  13-16] (e.g. r$(t) = ( l /A l )  Sp[exp(iHt) S,, exp(-iHt) S,!] and are 
normalized to unity at t = 0. 

The memory functions (irreducible operators) in equation (1) are series with respect 
to irreducible diagrams [14, 151 (see the appendix; see also the review in [16]). The 
algorithm developed in [ 141 was applied to computation of the TCF for paramagnets with 
an isotropic Heisenberg interaction. The spherical symmetry of the problem [ 141 resulted 
in a choice of correlation functions of a free particle (unperturbed Green functions) of 
the same form for x ,  y and z components: G,(t) = 1. At the same time, application 
of the analogous choice of unperturbed functions (1 for transverse and longitudinal 
components) to the computation of TCF having an anisotropic interaction (1) resulted in 
a not very successful description of even the central part (and certainly not of the wings) 
of the NMR spectrum using the non-linear equation (2). We should remark that the 
difference between the unperturbed Green functions of the longitudinal and transverse 
components has a significant character since it reflects the fundamental fact that TCFS of 
longitudinal spin components decay relatively slowly with respect to the TCFS of trans- 
verse components [ l ,  61 owing to the symmetry of the Hamiltonian (1). 

So, as a first stage, we explicitly summed the inputs from the H,, interaction of the 
Hamiltonian (1) in a series of rA(t) which in fact made it possible to form a new 
unperturbed Green function for a transverse component (see the appendix and also 
~ 7 1 ) .  



S D F  and wing shape of N M R  spectra 10133 

In the remaining part of the series for r A ( t )  we can sum the diagrams by a technique 
proposed in [14]. Thus, we obtain for rA ( t )  the following: 

r t  r t ’  

r A ( t )  = G,(t) - J G,(t - t ’ )  J KA(t’ - t”)rA( tr ’ )  dt’ d t ”  
0 0 (3) 

K A ( ~ )  = R A ( ~ )  - Q<t>. 

Diagram series for RA( t )  and Q(t )  are described in the appendix (equations (A5), (A6), 
(A7a) and (Al l ) ) .  We should emphasize that equation (3) can be obtained from 
equation (2) on a formal basis without any detailing of functions RA(t)  and Q(t) .  In the 
same manner we obtain for r(t) the following: 

i t  r t ’  

r(t) = G,(t) - J G”(t - t ’ )  J K(t‘ - t”)r(tfr) dt’ d t ”  
0 0 (4) 

K ( t )  = R(t) - Q<t> 
where R(t) is defined by equation (A7a). Although equations (3) and (4), similarly to 
the initial equation (2), are exact when the whole series is retained for the memory 
function within the limit of a large amount of neighbours (Z+ x )  and high temperatures 
(T-. a), a first-term approximation of the irreducible operators K(r)  corresponding to 
diagrams with two vertices gives a precision sufficient to describe the experimental 
results [ 1 ,5 ,  101, This is the consequence of the initial partial summation of a series for 
GO(t). All correction terms for diagrams with two vertices appearing in the next order 
and containing four vertices were calculated. The expressions derived are given in the 
appendix. 

Thus, substitution of appropriate expressions for memory functions in the lowest- 
order approximations (equations (A6), (A7) and (A12) in equations (2), (3) and (4), 
respectively) yields 

I ’  

G,(t) = exp(-/‘ / ri(t”) dt’ dt”)  
0 0  

1’ 

rA(t) = G,(t) - E *  if G,(t - t ’ )  i r A ( t ’  - t”)r$(t’ - t ” ) r A ( t ” )  dt‘ d t ”  
.’O .’0 

r ’  

r(t) = G,(t) - ~3 G,(t - t ’ )  / r A ( t ’  - t”)r$(t’ - t”)r(t”) dt’ d t ”  

(5) 

(7) 

.’0 J O  

The time is dimensionless in the system (5)-(8). The scale is defined by the value of 
B = K, where M2,, is an input into the second moment of NMR absorption spectrum 
of the Hamiltonian H,, in (1). .s1 = 3; = 8. Finally we should point out that the 
system (5)-(8) was obtained in [17] by a somewhat different method from the present 
one. 

Let us consider the possibility of linearizing the obtained system. First of all, we shall 
be interested in linearizing equations (7) and (8). Let us substitute for the function 
r;(t) the value unity in the kernels of equations (7) and (8). This is possible owing to a 
substantially shorter time scale of decay of the TCF GO(t), and of rA ( t )  with respect to 
Tfs(t) [l, 5,181. In agreement with the results of the above papers the decay time for 

= a, 
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rf4(t) is T ;  = 3 i 4T2, T2 = l / m ,  where M 2  is the second moment of the NMR 
spectrum defined by the Hamiltonian (1). Further, let us substitute r,(t) by Go(t). 
Indeed, the second moment of these TCFS differs only in the factor &MZ; their shape, as 
a direct numerical experiment indicates [18], is approximately the same. This may be 
deduced directly from the system considered: equations ( 5 )  and (7) differ only in a small 
(proportional to a) term. Finally, since T ;  = 3 t 4T2, we may assume that fields created 
by the spins of a ‘cell’ [19,20] have a quasi-static character. Because of this, Go(t) = 
exp( - B2t2/2). 

Thus, we obtain the desired linearized form of equations (7) and (8). We get 

r(t) = G,(t) - Jo‘ dt’  Go(t - t ’ )  Jof’ dt”  Go@’ - c”)r(t”) (9) 

i.e. we obtain an equation coinciding with the major equation of [20]. The Fourier 
transform of a solution of equation (9) describes fairly well the major part of the NMR 
spectrum excluding the outside part of the wings. The linear equation (9) is in fact 
equation (8) with a memory function as the bare irreducible skeleton diagrams of the 
lowest order. Finally, after linearization, addition of the cross terms r;(t), i # j ,  and 
appropriate easy calculations, equation (6)  can be reduced at large times to an equation 
for spin diffusion [ 111. 

A good description of the main features of free induction decay (FID) based upon (9) 
stems from the above procedure which makes it possible to take into account the non- 
equivalent character of unperturbed Green functions of transverse and longitudinal spin 
components. 

However, the use of a system of non-linear equations is quite significant to describe 
the effects that we were dealing with. First, the system enables one to determine a 
direct relation of SDF to the shape of the NMR line and, second, linearization results in 
asymptotics of the type exp[ - ao ln’I2( Po)] .  The respective reasons will be analysed 
below. 

3. The shape of the TCF spectra wings and analytical characteristics of the solutions 

Go(t), rf4(t) and r,(t) functions considered as functions of a complex variable have no 
singularities on the real axis. In fact on the real axis they describe the relaxation of the 
various components of magnetization to an equilibrium value varying from 1 (at t = 0) 
to 0 (when 1 t (  + m). At the same time, on extension to a plane of a complex variable z, 
singularities may appear. This may be accompanied by two main possibilities. 

(i) A singularity arises at an infinitely distant point. 
(ii) A singularity arises at a final distance at a point to. 

A singularity in a complex plane strictly involves an exponential decrease in the 
distant Fourier components of the spectrum [21]: 

f m  = Js f(x) exp(iox) dx - exp(-ox,) 
--z 

the approximation holding for o x  1, where x1 is the distance from a real axis to the 
nearest singularity in the complex plane. The relationship is independent of the type of 
isolated singularity (pole or branching point) [21]. In both cases, the asymptotics are 
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exponential. Only the appearance of singularities on a real axis, transforming the decay 
into oscillations, is critical with respect to exponential asymptotics. 

The TCF of interest in (5)-(7) may be expanded into the series 
r 

x " 

G2n, X2,  and Z2, are the moments of corresponding functions [ l l ] .  The radius of 
convergence of the series may be determined according to D'Alamber's formula: 

n- n- = 

Thus, the setting of moments enables one to determine the position of singularities. The 
higher the order of a known moment, the more precisely is a singularity localized. The 
substitution of expansion (1 1)-( 13) into the system (5)-(7) and the equating of respective 
coefficients results in recurrence relations for moments: 

Thus, we may deduce from the system (5)-(7) and expansion (11)-(13) that the TCFS of 
interest have the nearest singularity on the imaginary axis. Retaining in the vicinity of a 
singularity ( I t  - i tol  4 It[)  the most divergent part [22], we get 

F y t )  = ak/imk(t - t o p  k = 1,2 ,3 .  (17) 

Here Fk(t) are rA(t), Go(t) and I ' i ( t ) ,  respectively. By substitution of these equations 
into the system (5)-(7), initially differentiating with respect to time after rather simple 
algebra dealing with the selection of the most divergent terms on both sides of equations 
and subsequent equating of the power indices and coefficients, we obtain the indices 
m, = m2 = m3 = 2 and the functions 

r A ( t )  = - V m / ( t  - i t 0 )2  = - 2 G / ( t  - i t 0 )2  

Go(t) = - ( V ' m ) ( l  - ~ ~ ) / ( t  - i t o )2  = -l.W%/(t - i t o )2  

r:,(t) = 2/(t - i t o )2  

(18) 

(19) 

(20) 
which are the major part of the solution of the system (5)-(7) in the vicinity of a singularity 
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nearest to the real axis. So, from equations (18)-(20) we may determine the distant 
Fourier transforms of these functions by shifting the integration contour according to 
the general rules [21] 

Let us outline the procedure of determination of the parameter through the moments: 

M $ i )  = l x  oZrtgk(o) d o .  
--z 

Here are X2,,  G2,, and ZZn, respectively. Since the integral function contains the 
term 02", the value of the moment at large n will depend on the distant Fourier transforms 
of equations (21). Substituting (21) in (24), we find that 

On the other hand, the moments determined by equation (23) enter as coefficients of 
expansion in the respective TCFS in a power series with respect to time (equations (11)- 
(13)) and they can be determined by the recurrence relations (14)-(16) obtained from 
the system (5)-(7), 

4. Discussion and comparison with the experimental data 

The recurrent relationships were used to compute the moments up to the 34th order 
using a computer, and subsequent determination of the z L2")-values were possible: 

(z$2")2 = 242n  + 1)X2n-2/X2n ( z y ) 2  = 2n(2n + 1)z2n-2 /z2"  
(24) ( Z Y ) ) ~  = 2n(2n + 1)G2n-2/G2n. 

The results obtained are given in figure 1 as a dependence of (z 6"))' on l/n. In agreement 
with the above assumptions the resultant sequence converges to a certain limiting value, 
6.48, which is common to all three functions. We should emphasize that, in fact, 
equations (24) are expressions to determine the radius of convergence of power series 
(11)-(13) according to D'Alamber's criterion which is somewhat modified owing to the 
type of singularity (a pole of the second order). A 'direct use' of D'Alamber's criterion 
has as a result that equation (134 ensures slow convergence. Let us evaluate the results 
of several sequential simplifications of the system (5)-(8). If l?;(t) is replaced by Gi(t) 
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Figure 1. A position of singularity of the solution 
of system (11)-(13) as a function of the inverse 
moment number used in calculation. t,, t, and tg 
characterize the singularity of each of the above 
three equations. 

in equation (6) in the integral function, a new system of integral non-linear equations 
can be constructed: 

f ’  

GO(t)  = exp(-Sf 1 dt’ d t “  r;(t’’)) 
0 0  
r ,  r ,  

r;(t) = 1 - E 2  JO’ Io’ Gi(t’ - trf)r2(tir) dt’ dt”.  

Recurrence relations for moments may now be written in the following way: 
I t  k 

Z 2 n + 2  = E l  Z 2 n - 2 k  2 C?kmX2k-2m 
k = O  m=O 

n (26) 
~ 2 n + 2  = ~ 2 + 1 ~ 2 m z 2 n - 2 m *  

m=O 

The sequence of values T;;, calculated according to equation (24) as a function of 
1/n converges to the value T ;  = 6.81. In the vicinity of a singularity we obtain for the 
major part of solution of the system (25) 

r:(t) = -2/( t  - i r0)2  GO(t)  = -dZ i / ( t  - (27) 
Thus, in spite of the above simplification the singularity remains as a pole of the second 
order, although its position is somewhat shifted. This procedure also results in a slight 
variation in coefficients. 

Let us linearize the system (25) by changing G;(t) by exp( - t 2 ) .  Then the frequency 
asymptotics may be obtained by a saddle-point method [9]: 

g ( w )  = [1 /q4nw ln’/2(16w)] exp[-w ln’’2(16w)]. (28) 
Linearization involves the elimination of the singularity (it has been shifted to a point in 
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Table 1. The decay constants of the exponential SDF and absorption at wings corresponding 
to CaF2. The data on the shape of lines were obtained via Fourier transform of the trial 
function approximating experimental points [lo]. 

SDF (P) 
Experimental 
shape of lines Experimental Memory function Theory 

Orientation (ps) [ 101 data [ 11 method [7]  (P) 

100 49.69 t 0.84 - 45 42.1 
110 115 t 4 57 t 0.5 61 57 
111 105.9 ? 1.6 80?  1 81 101 

the infinite distance), since the Gauss function belongs to a class of integer functions. 
The linearization also resulted in a slight alteration in the dependence of the asymptotics 
of frequency. Nevertheless, the above approximation to a certain extent can be con- 
sidered as satisfactory, since ln”’(o) is a slowly varying function which causes (28) to be 
slightly different from a pure exponential if we are interested in a not too distant wing. 

At the same time, equation (28) is incorrect principally since it possesses a singularity 
at an infinite point in contrast to the singularity at a finite distance appearing in real 
systems. A condition that the determination of the above singularity involves the use of 
approximate system (5)-(7) does not play a significant role here. However, one can 
deduce from the above arguments that the non-linearity of the system (5)-(7) is of major 
importance in the elimination of the logarithm in a power index in (28). 

The most rough operation will be the substitution of r3(r) for 1 in the exponential 
index of the first equation of the system (25). We have 

G,(r) = exp(-r2/2) (29) 

which involves unreal Gaussian frequency asymptotics [8] instead of a simple 
exponential. 

Since the spectral asymptotics G,(t), r,(t) and rs(r) have been determined, the 
whole NMR line profile at wings can be calculated. Let us substitute (18)-(20) in equation 
(8). Omitting unimportant terms, we find that 

r(r) = -1.5V%/(t - i t 0 )2  - ~,2V%/6(r - i t o )2  = -14V%/(t - (30) 

and 

= ( 1 4 / f i ) 1 4  ~ X P ( - ~ ~ I ~ I ) .  

The results obtained for high-frequency asymptotics establish a direct relationship 
between the SDF and the shape of the wing absorption contour. Both these values should 
have an exponential dependence on frequency with the same index zo = 6. 48/M:i2. The 
computation results and respective experimental data are given in table 1. The exper- 
imental results on the shapes of lines given in the table have been obtained by the present 
authors using analytical calculations of the Fourier transform of the trial function used 
in [lo] to approximate the experimental FID observed over an interval from fractions to 
hundreds of microseconds (i.e. at an interval 10T2). An exponential shape was in fact 
observed for the wing. The decay time (value of to) is given in table 1. Experimental 
data on the SDF has been taken from [l]. Also, the values of SDF decay obtained by fitting 
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LO 60 
w (rad kHz) 

Figure3. Logarithmof thespectrumof theFourier 
function gi(w) versus frequency for the field 
Hnli [llO](curveA)andHo 1 )  [lll](curveB):-, 
theory; 0,0, experimental data [ l ] .  

Figure 2. Logarithm of NMR absorption spectrum 
in single-crystal CaF, as a function of frequency 
for the field Hn / I  [ 1001 (curve A),  Ho / I  [ 1101 (curve 
B) and Ho 11 [ l l l ]  (curve C): -, theory; 0, 
experimental data [lo]. 

within the framework of the memory function method [7] are given in table 1. The fact 
that some discrepancy is obtained between the values of to determined according to the 
FID and SDF indicates that the real asymptotics for SDF given in [I] have not yet been 
attained (see figure 3). A logarithmic function of the shape of the absorption line 
plotted versus frequency is given in figure 2. The experimental results were obtained via 
transformation of Fourier arrays of experimental points taken from [lo] and extended 
by a trial function [ 101 to 350 ,us. The relative uncertainty in determination of a spectrum 
g(w) related to the use of numerical methods (restricted time interval of definition of 
the function and numerical integration) was about 1%. The experimental error in [lo] 
was 1%. The theoretical curve reflects the result of numerical solution of the system (5)-  
(8). The solution was obtained by the iteration technique using acomputer. The function 

1 G!(t) exp - ( B 2 / 2 )  ( t  - t ) k ( z )  d z  [ Jof 
was used as a first (‘primer’) function during solutions of this equation. The iteration 
was continued until 

max[Iri(t) - ri-l(t)l] 20 .05  

where ri(t), r(t)i- are solutions at the ith and (i - 1)th steps, respectively. As the above 
figure illustrates, good agreement between the theory and experiment was obtained. 
Figure 3 shows a logarithm of the Fourier transform of the function r: ( t )  plotted versus 
frequency. The experimental data were taken from [l]. The theoretical results were 
obtained in the same way as the g ( w )  curves. Comparison of figures 2 and 3 indicates 
that the authors of [l] did not find the ‘true’ wing of the SDF which is presumably caused 
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Figure 4. The spectrum of "F nuclear absorption 
insingle-crystalCaF,for thefieldH, / I  [loo] (curve 
A),  H,,11[110] (curve B) and HOl / [ l l l ]  (curve 
C): --, theory; 0,  experimental data [lo]. 160 

w (rad kHz) 
0 

by a relatively small gyromagnetic ratio of the isotope 43Ca. Figure 4 outlines the profile 
of the NMR line as a function of frequency. It was obtained by solving the system (5)-(8) 
by the above technique. An arrow indicates the frequency corresponding to the last 
experimental point taken in [lo]. The first experimental point obtained in [lo] cor- 
responds to the approximate frequency 12.56 X lo3 kHz rad. 

5. Conclusion 

The equations of dynamics of a nuclear spin system in solids were obtained by a rigorous 
method and solutions were analysed. Some remarkable experimental results [ l ]  were 
explained and new predictions were made. It was stated that the wings of NMR absorption 
in solids were exponentials with the same decrement as the SDF. To confirm the prediction 
the most valuable experimental results [ 101 were re-examined and satisfactory coinci- 
dence of the theoretical predictions and experimental results was demonstrated. 

Thus, the obtained equation enables one to account for the variety of experimental 
results correctly. 
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Appendix 

The coefficients of expansions of the TCF into a time power series (moments) can be 
expressed through multiple commutators with a Hamiltonian. For instance, for TCF 

r A ( t > ,  

xin = Sp{[H, H ,  . . . , [ H ,  s:] * . .]s;}/sp(s: S ; )  (AI)  
while using a diagram technique [14] a process of computation of commutators in 
moments (Al )  should be considered at the first stage. 
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Each act of commutation with an additive H,, from (1) is related to the 'longitudinal 
vertex' (corresponding to the b,) 

J, ' 
0 

I /0 I - 

and commutation with an additive Hff from (1) to a transverse vertex (corresponding to 
an index aij) 

The operator S, is designated by a broken line, whereas the operators S+ or S -  are 
designated by a full line marked with an arrow if necessary and directed in an opposite 
manner depending on the type of operator. 

The moment M2,, corresponds to the sum of all possible diagrams containing 2n 
vertices, and the number of lines increases when passing through n vertices, whereas the 
rest of vertices ( n )  decreases the number of lines when the diagram passes along the time 
axis (from the left to the right in equations (A2) and (A3)). 

Thus, every diagram begins and ends by one line corresponding to operators S: or 
Si. (a = Z ,  +, -) depending on the type of correlation function. All vertices should be 
connected between each other by at least one line (according to the theorem of con- 
nection [14]). As an example let us show all diagrams giving an input into the second 
moments. 

I J 
- \  

J -. x,: + i I $ -  z,: ---e;- I 

I J I 

I I j 

~ ~ ( i  + j ) :  M Z , ( i ,  j ) :  --TO-;-, 
J J I 

A summation is realized over all the inner indices i ,  j ,  present in the diagrams. Each 
diagram is multiplied by a time factor obtained after distribution of time variables t l ,  
t , ,  , , , , t,, at vertices from the left to the right and computation of the integral 

The obtained diagrams can be divided into reducible and irreducible. As usual, the 
diagrams are called reducible if we can decompose them in two parts by cutting along 
one line. The summation of diagram series is realized [14] by replacement of all thin 
lines by thick lines upon an irreducible diagram. Each thick line is then related to a 
proper correlation function (r,(t), ( t ) ) .  Although an input of cross TCF can be taken 
into account during summation it is negligibly small for high 2 [18,21]. The above 
procedure is precise when 2 + CC [ 141. 
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Thus, the memory functions in equations (3) and (4) are the series with respect to 
irreducible diagrams with increasing number of vertices: 

z 

R " ( f )  = E R"2"'(f). 
m = l  

The index a in (A5) distinguishes between irreducible operators for TCFS r:,(t) and 

The first terms in expansion (A5) are obtained from irreducible parts of the skeleton 
rA(t). 

diagrams (A4) via replacement of thin lines by thick lines. Consequently, 

z?p(t) = E3rA(t)rf4(t) (A6) 

c4 = 914 

the mth term of the series being a sum of integrals of production of autocorrelation 
functions. We show all the diagrams of the fourth order for N 4 ) ( f )  as an example: 

and apparent expressions for their input [15] 

Let us now retain only the diagrams with longitudinal vertices in a series for rA(t) 
conserving the transverse vertices in a process of the replacement of an ordinary broken 
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Figure AI. Corrections originating in diagrams with four vertices (Ho 11 [l l l]) :  curve A, the 
signal of free precession without correction; curve B, corrections; curve C, the corrected 
signal of free precession. ( b )  The same as (a) plotted for the kernel (Alla).  

line by only a thick line, i.e. during renormalization of lines corresponding to operators 
{ST}, but we shall neglect transverse vertices when normalizing lines for Go(t). Des- 
ignating the sum of interest of a diagram series as Go(t) and the corresponding irreducible 
operator (memory function) as Q(t) ,  we obtain 

dGo(t) Q ( t  - tl)G,(tl) dt,.  - d t  = -Jot 

The first two diagrams for Q(t) can be plotted as follows: 
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(the wavy line denotes the function G,(t)) and the corresponding apparent expression 
is 

Q 2 ( t >  = Go(t)ri(t) 

( A l l )  
Q(4)(t)  = - lor lof’ dt ,  dt, Go@ - tl)GO(tl - t2)GO(t2)ri(tl - t 2 ) r i ( t l ) .  

Thus, G,(t) is the autocorrelation function of the transverse component of a spin in 
a local z field, modulated by flip-flop interaction, i.e. FID for the Anderson model 
[lo, 111. The above diagram series for G,(t) can be summed directly [17] without use of 
the irreducible operator because all longitudinal vertices corresponding to the rotation 
around a fixed axis z are commutative and, consequently, the numerical coefficient in 
front of the diagram depends on the number of vertices and does not depend on their 
distribution along the time axis. 

The summation yields 

i.e. the ordinary Anderson function [ 101. The result obtained corresponds to the lowest 
approximation in the cumulant expansion; because the permutability of vertexes cor- 
responds to turns about the same axis (in our case z ) ,  all higher cumulants become 0. 

The results of calculation of corrections originating in all diagrams with four vertices 
are given in figure A1 : 

R(’)(t) + R o ( t )  - Q‘2’(t) - Q(4)(t) = [R(t)  - Q(t)](4). (Al la )  

These figures also show the time dependence of the irreducible operator containing two 
and four vertex inputs. As these figures indicate, the correction due to R(4)( t )  is small. 
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